

Blake McGowan, CPE

- Blake McGowan, Director of Ergonomics Research for the Humantech brand of VelocityEHS, leads the Ergonomics Research group to incorporate the latest technical and scientific data into Humantech's software solutions. He also consults with academia to transfer the latest research knowledge into the Humantech approach, systems, assessment methods, and guidelines.
- Achieved recognition as a Certified Professional Ergonomist (CPE).
- Advisory Panel for the IISE Transactions on Occupational Ergonomics and Human Factors Journal,
- National Occupational Research Agenda (NORA) Musculoskeletal Health Cross-sector Council,
 American Conference of Governmental Industrial Hygienists (ACGIH),
- American Industrial Hygiene Association (AIHA),
 Human Factors and Ergonomics Society (HFES).

Past Chair and Officer of the AIHA Ergonomics Committee.

2

3

Seek & Aggregate Research Information

velocityEHS'

Translate Information into Knowledge

VelocityEHS'

VelocityEHS'

Translate Information into Knowledge

velocityEHS'

Transfer Value to our Software & Services

Motion Capture Technology

Advanced Tool

VelocityEHS

5

Unique Knowledges, Insights & Key Learning's

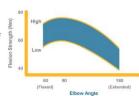
VelocityEHS'

√elocityEHS*

Cost Justifying Ergonomics

- Value of Ergonomics
 - Reminder: Ergonomics Optimizes Human Performance
 - Benefactors & Benefits
- · Cost Justifying Ergonomics
 - Overview of Cost Justification
 - Approaches to Cost Justification • Using Cost Justification Estimators
 - Projecting Savings Based on Risk Reduction

VelocityEHS'


7

9

8

Reminder: Ergonomics Optimizes Human Performance Fundamentals - Definition of Ergonomics

Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design in order to optimize human well-being and overall system performance.

50 © Copyright 2021, Velocity GHS. Do not distribute without authorized consent.

VelocityEHS

10

Optimized Human Performance

| High | High | Low | Low | Elbow Angle | El

velocityEHS'

Is this Part of the Problem?

The goal of ergonomics is to <u>prevent soft tissue</u> <u>injuries and musculoskeletal disorders</u> (MSDs) caused by sudden or sustained exposure to force, vibration, repetitive motion, and awkward nosture

Centers of Disease Control and Prevention (CDC) and National Institute for Occupational Sofiety and Health (NIOSH)

VelocityEHS'

11

Is this Part of the Problem?

An ergonomics program is a systematic approach and a management system that is designed to reduce risk from ergonomic hazards in the workplace

13 © Copyright 2021, VelocityGHG. Do not distribute without authorized consent.

velocityEHS'

13

Benefactors & Benefits ### VelocityEHS**

Benefactors & Benefits

15

16

14

Cost justification

Cost Justification is a broad term that can refer to a wide range in level of detail.

- Cost justification "can mean simply that the proposed action is the most cost-effective solution to a problem or need that absolutely must be addressed."
- Two common tools used in cost justification are:
 - Benefit-cost analysis (BCA)
 - Return on investment (ROI)

velocityEHS*

Benefit Cost Analysis vs Return on Investment

Benefit Cost Analysis	Return on Investment
Emphasizes financial feasibility	Emphasizes financial return
More flexible	More stringent
Multiple formulas	Specific formula
Longer-term benefits	Time sensitive
More comprehensive – includes intangibles Benefits to affected parties	Focused on tangible costs and benefits Benefits to investor

18 © Copyright 2021, VelocitySFS. Do not distribute without authorized con-

VelocityEHS'

9 20

Average Cost of a Musculoskeletal Disorder (MSD)

The average cost of an MSD is \$38,000. The total cost of purchasing and installing 2 lift tables is \$19,000.

BCA1: \$38,000/\$19,000 = 2.0 BCA2: \$38,000-\$19,000 = \$19,000

Simple ROI: (\$38,000-\$19,000)/\$19,000 = 100%

The results look good. Are there any challenges with this approach?

💋 21 O Copyright 2021, Wolcong GAG. Con real distribution without authorized consent.

21

Average Cost of a Musculoskeletal Disorder (MSD)

Question the CFO/Controller might ask:

"Have injuries been costing us \$38,000/year on this job?"

0 Copyright 2001, Velocity 6HS. Do not distribute without authorized conser

VelocityEHS'

22

Historical Injury Cost

The average cost of injuries at this station have been \$9,500/year over the last 5 years. The total cost of purchasing and installing 2 lift tables is \$19,000.

1 Year Results	3 Year Results	
BCA1: \$9,500/\$19,000 = 0.5	BCA1: \$28,500/\$19,000 = 1.5	
BCA2: \$9,500 - \$19,000 = -\$9,500	BCA2: \$28,500 - \$19,000 = \$9,500	
Simple ROI: (\$9,500-\$19,000)/\$19,000 = -50%	Simple ROI: (\$28,500-\$19,000)/\$19,000 = 50% or 16.6% annually	

Historical Injury Cost

If you start justifying ergonomics improvements based on historical injury costs, how do shift that justification when a high risk job hasn't had a previous injury?

23 © Copyright 2021, Velocity GHS. Do not distribute without authorized co

VelocityEHS

24 © Copyright 2021, VelocityGHS. Do not distribute without authorized in

VelocityEHS

23

Using Injury Cost Data in Cost Justification

velocityEHS*

25

27

Productivity Improvement √elocityEHS*

Improved Manufacturing Performance

VelocityEHS'

Productivity Improvement

VelocityEHS'

28

26

Productivity Improvement

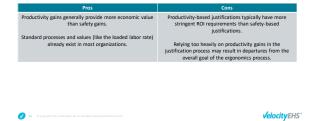
Having 1 lift table with a rotating top is expected to save 3.7 seconds per part due to reduced walking and reaching. This saves \$13,000/year across all 3 shifts. The total cost of purchasing and installing a lift tables with a rotating top is \$10,000.

BCA1: \$13,000/\$10,000 = 1.3 BCA2: \$13,000-\$10,000 = \$3,000

Simple ROI: (\$13,000-\$10,000)/\$10,000 = 30%

velocityEHS'

Productivity Improvement


Question the CFO/Controller might ask:

"Are we saving anything if we haven't reduced headcount?"

VelocityEHS'

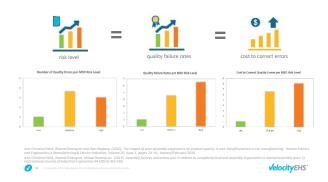
29

Using Productivity Data in Cost Justification

Other Operations-Centric Measures √elocityEHS'

32

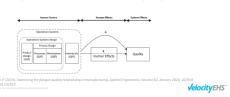
Operations-Centric Measures


Quality improvement Repair/Rework Scrap Warranty claims Downtime reduction Set-up time reduction

31

VelocityEHS

33



34

Impact of Fatigue on Manufacturing Quality

Fatigue is an intermediary factor between HF and manufacturing quality.

• Fatigue accounts up to 42% of the variance in quality deficits.

Using Quality and Other Operations-Centric Data in **Cost Justification**

Pros	Cons
You are presenting benefits in a business language that is aligned with important business objectives. There are substantial financial benefits, as well as intangible business benefits, from improved quality.	This can be difficult data to obtain accurate costing information directly attributable to poor ergonomics.

VelocityEHS'

36

Human Resource Measures

Turnover Absenteeism Engagement

Turnover: **↓ 23-49**% Absenteeism: **↓ 42-116**%

VelocityEHS

38

Turnover Reduction

39

41

Turnover in the department with the highest MSD risk is between 3x and 4x all other departments. Median length of employment is 6 months. HR estimates turnover costs (recruitment + training time) as \$3,500/person. Ergonomics improvements to a workstation will improve working conditions and are expected to reduce turnover to plantwide average, saving an estimated \$7,000/year in turnover costs. The total cost of these improvements is \$10,000/year.

1 Year Results	3 Year Results
BCA1: \$7,000/\$10,000 = 0.7	BCA1: \$21,000/\$10,000 = 2.1
BCA2: \$7,000 - \$10,000 = -\$3,000	BCA2: \$21,000 - \$10,000 = \$11
Simple ROI: (\$7,000-\$10,000)/\$10,000 = -30%	Simple ROI: (\$21,000-\$10,000)/\$10,000 = 110% or 36.7%/year

velocityEHS'

40

Is Using an Estimator Valid?

Every cost justification is an estimation of the benefits.

A simple, standardized approach can efficiently accomplish one of the goals of cost justification: "Are we selecting the most effective approach?"

A request for more information isn't a negative outcome.

velocityEHS'

Example of an Estimator

VelocityEHS

42

Basing Savings Estimates on MSD risk

VelocityEHS

Risk-Based Estimator

Pros	Cons
The research supporting the values in the estimator is well documented.	Relies on averages rather than specific data.
Very little information needed to complete.	Does not account for significant injury history.
Estimate varies based on effectiveness of improvement.	No ability to customize inputs or assumptions.
Relies on risk rather than injury to drive estimates promoting a proactive ergonomics process.	Use is limited to one specific risk assessment methodology.

. .

Estimator Content: Injury Data

Overall IR = 2.8/100 FTEs

Over-exertion is > 25% of incidents; all injuries due to poor ergonomics is more like 33% of incidents

Industrial/manufacturing jobs typically assessed for MSD risk have a substantially higher injury rate. Estimated as 2.5 % (about 3x higher than overall working population).

Average direct and indirect cost of MSD injury used is rounded to \$60,000 Average injury cost improvement is 68%.

Improvement Averages and CI based on Goggins et al (2008

VelocityEHS

VelocityEHS

46

Estimator Content: Productivity

Based on a fully loaded hourly rate of \$15/hours

Average productivity improvement after ergonomics improvements is 25%

Estimator equation uses an ultra-conservative number of 8% productivity improvement (because individual station productivity gains are hard to realize in overall gains until many stations have been improved)

Estimator Content: Scrap & Rework

Based on a conservative average of \$3,000/year/workstation Average quality savings after ergonomics improvements is 67% Estimator equation uses a conservative number of 47% scrap and rework cost reduction (80% of the LCI)

47 © Copyright 2021, VelocityGHS. Do not distribute without authorized conser

VelocityEHS

48 © Capyright 2021, WelcotyGHG. Do not distribute without authorized con

VelocityEHS'

47

43

Estimator Content: Turnover

Based on 25% turnover rate in manufacturing jobs

Average cost for worker replacement is \$5,500 including recruiting, hiring, and training costs

Average turnover reduction after ergonomics improvements is 48%

Estimator equation uses a conservative number of 32% reduction in turnover (80% of the LCI)

VelocityEHS'

49

Estimator Content: Absenteeism

Based on 1% average absenteeism

Average cost for absenteeism is based on \$700/year/employee

Average turnover reduction after ergonomics improvements is

Estimator equation uses a conservative number of 34% reduction in absenteeism (80% of the LCI)

VelocityEHS


50

VelocityEHS Specific Data

Average and distribution of MSD risk scores

Injury rates associated with different MSD risk scores

Average MSD risk score change associated with engineering improvements

VelocityEHS'

51

52

Risk-Based Estimator

Anticipated	Projected		Current	
Savings	# of High-Risk Body Areas	RPS Score	# of High-Risk Body Areas	RPS Score
\$5,885	0	16	4	32

*Cost savings are based on averages reported in research literature for jobs with similar risk reductions. Individual projects will vary in actual savings. This data is intended to guide decisions about the appropriate next steps, which may include conducting a formal ROI.

Breakdown of Anticipated Savings					
Injury Costs	\$1,088				
Productivity	\$2,560				
Scrap/Rework	\$1,510				
Turnover	\$469				
Absenteeism	\$257				

VelocityEHS

Using a Risk-Based Estimator

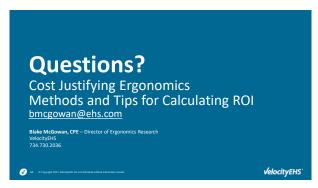
Anticipated	Projected		Current	
Savings	RPS Score # of High-Risk Body Areas		# of High-Risk Body Areas	PS Score
\$5,885	0	16	4	32
\$2,560 \$1,510	Productivity Scrap/Rework	eductions, individual projects will vary in ctual savings. This data is intended to guide incisions about the appropriate next steps, which may include conductina a formal RDU.		
\$469	Turnover			
\$257	Absenteeism		ase consucting a juntous nov.	

VelocityEHS'

Applying a Risk-Based Estimator

	Option 1 Two Person Lift	Option 2 Lift Tables	Option 3 Vacuum Hoist
Anticipated Year 1 Cost	\$6,000	\$10,000	\$25,000
Ongoing Annual Cost	\$6,000	\$0	\$0
Projected Risk Reduction	2 points	5 points	15 points
Projected Annual Savings	\$1,014	\$2,535	\$7,605
CBA1 17%		25%	30%
Breakeven	Never	3.9 Years	3.3 Years

VelocityEHS


53

Applying a Risk-Based Estimator

- Company X improved and completed follow-up assessments on 53 jobs
- The average RPS improvement on these 53 jobs is 15.2 points
- The number of high RPS score jobs was reduced from 48 to 0
- Based on this reduction in risk, Company X has achieved an estimated annual savings of \$355,672 or just under \$7,409/job improved

• The detailed breakdown of this savings estimate is:

Annual Projected Savings					
Injury Reduction	Productivity Improvement	Quality Improvement	Turnover Reduction	Absenteeism Reduction	
\$52,227	\$211,552	\$62,143	\$19,172	\$10,578	

