## **VelocityEHS**<sup>®</sup>

# Designing Better Controls for Ergonomics

Rachel Zoky, CPE • Rick Barker, CSP, CPE • Blake McGowan, CPE

March 20, 2024

### Agenda

- Introduction
- Using Design Principles
- Applying Design Guidelines
- Verifying Control Effectiveness
- Employing Lessons Learned





#### **Two Related Design Challenges in Ergonomics**

- Changes to existing workplace
- Design of new workplaces (Prevention-through-Design)



#### **Common Current State**

#### **Existing Work Environment**

- Equipment changed to fit specific (or first shift) worker
- Little or no verification of control effectiveness
- Limited application of effective controls to similar jobs
- Limited awareness of MSD risk

#### **New Design**

- Ergonomics isn't involved until reviewing the built or purchased equipment (Limited resources to make expensive changes)
- Updates made on existing equipment aren't incorporated into new designs
- Responsibility for considering ergonomics isn't established

#### Four Tools for Improving Controls in Ergonomics

- Principles of Ergonomics for Design
- Design Guidelines for Ergonomics
- Verification of Controls
- Lessons Learned



## Principles of Ergonomics for Design





© Copyright 2024, VelocityEHS. Do not distribute without authorized consent.

### **Application and Limitations of Design Principles**

#### When should you focus on Design Principles?

#### **Applications**

- Evaluating a new product design/proposal (accessibility, number of parts, etc.)
- Design Trade-off evaluations
  - » Completing risk factors
  - » Level of impact of risk

#### Limitations

- Lack specificity
- Requires more expertise and experience to apply correctly



#### **Design Principles: Product Engineers**

- Avoid part fits that will result in the operator striking the parts with the hand to obtain a fit
- Provide sufficient sensory feedback (primarily tactile) for operators to verify connection
- Minimize the number of component parts, especially fasteners
- Design parts for ease of alignment

- Mistake-proof component parts to ensure "one way - right way" assembly
- Provide sufficient visual access, especially for critical connection
- Ensure that fit and force requirements are not impacted by parts at extremes of tolerance (adequate tolerance provided for parts stack-up)



### **Using Design Principles: New Product Designs**

#### What do I analyze before official CAD designs?

- 3D print prototype parts
  - » Grip locations
  - » Estimated weights/assembly forces
  - » Access spacing
  - » Number of attachments







### **Design Principles: Manufacturing Engineers**

#### When should you Design for the Average?

- First Choice: Design for Adjustability
  - » Large/awkward handheld components
  - » High forces
  - » High frequency/fast-paced work
- Otherwise, Design for Extremes
  - » <u>Clearances</u> for the largest or tallest (95th%ile male)
  - » <u>Reaches</u> for the smallest of shortest (5th%ile female)



US Average Men's size: 10.5 US Average Women's size: 8.5 (size 7 in men's)

Everyone gets a size 9!





### **Using Design Principles: Existing Work Environments**

# Prioritize risk factors that are present based on level of impact

- What type of work is being performed at this station?
  - » High precision/ Very detailed
  - » General assembly
  - » High force
- How often is this job being performed?
- What is the "worst-case scenario" of this work being performed?
  - » i.e. shortest operator or tallest? Biggest operator or



### **Using Design Principles: New Equipment Designs**

#### What do I analyze before official CAD designs?

- Review material flow through station
  - » Verify accessibility to grab and place components
    - Do fixture tolerances align with component tolerances?
  - » Evaluate design of material racks/carts/ etc.
    - Fixed height vs adjustable height
    - Spacing requirements (impact of packaging?)
  - » Evaluate impact of environment on flow (i.e. lighting, spacing with other lines, guarding, etc.)

» Can components be loaded incorrectly?



Cardboard mock-ups of the theoretical equipment, workstations, fixtures, and current hand tools Printed reference information such as current part designs, timed task lists, current layout design, etc.

## Design Guidelines for Ergonomics





13 © Copyright 2024, VelocityEHS. Do not distribute without authorized consent.

### **Applications and Limitations of Design Guidelines**

#### When should you focus on Design Guidelines?

#### **Applications**

- Evaluating an existing design/ workstation
- Specific dimensions for a single category
  - » Defined rules for a given result
- Easy for non-experts to apply

#### Limitations

 Multiple risk factors interacting » ex. Trade-off in guarding between safety and ergonomics

**VelocityEHS**<sup>®</sup>

### **Tip For More Effective Design Guidelines**

#### Say What You Mean/Define Actions

| Optimal            | "Optimal" guidelines are best case scenarios, often requiring adjustability. Optimal designs are most applicable for jobs with high ergonomics demands                                                                                                                                           |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meets Standard     | "Meets Standard" is the target design that should result in minimal risk exposure to employees for most job tasks                                                                                                                                                                                |
| Further Assessment | "Further Assessment" applies to the range that may or may not minimize risk<br>exposure to employees, depending on the specific situation. Any design criteria<br>that falls in the "Further Assessment" range shall be reviewed with an ergonomics<br>specialist prior to approving the design. |
| Criteria Not Met   | If it is not technically or financially feasible to meet the design criteria, the ergonomist will complete a preliminary risk assessment. If the design is projected to have a high risk of MSD, Senior Leadership must acknowledge and approve the risk exposure.                               |



#### **Examples of Design Guidelines**



#### **Chuck Pinch Grip**



Key Pinch Grip

| Design Guidelines for Ergonomics Menu                     |                        |                 |                       |                       |                      |                             |  |  |
|-----------------------------------------------------------|------------------------|-----------------|-----------------------|-----------------------|----------------------|-----------------------------|--|--|
| Hand Strength – All Populations                           |                        |                 |                       |                       |                      |                             |  |  |
| Finger push                                               | Finger pull Thumb push |                 | push On               | e-handed<br>inch grip | Power grip           | Insertion/<br>removal       |  |  |
| One-Handed Pinch Grip Force                               |                        |                 |                       |                       |                      |                             |  |  |
| Force Exertions:                                          | Frequent (≥ 2/min.)    |                 | Infrequent (< 2/min.) |                       |                      |                             |  |  |
| Pinch Grip                                                | Recommended            | Acceptable      | Recommended           | Acceptable            |                      |                             |  |  |
| Chuck pinch grip*<br>(with wrist deviation <sup>†</sup> ) | 2.0 lb (0.9 kg)        | 2.4 lb (1.1 kg) | 4.0 lb (1.8 kg)       | 5.1 lb (2.3 kg)       | * Thumh opposing p   | ade of index middle fingers |  |  |
| Chuck pinch grip<br>(no wrist deviation)                  | 3.2 lb (1.4 kg)        | 4.7 lb (2.1 kg) | 7.9 lb (3.6 kg)       | 10.3 lb (4.7 kg)      | † Noticeable flexion | extension, ulnar, radial    |  |  |
| Key pinch grip <sup>‡</sup><br>(with wrist deviation)     | 2.0 lb (0.9 kg)        | 2.9 lb (1.3 kg) | 4.8 lb (2.2 kg)       | 6.3 lb (2.9 kg)       | ‡ Thumb opposing s   | ide of index finger         |  |  |
| Key pinch grip<br>(no wrist deviation)                    | 3.9 lb (1.8 kg)        | 6.0 lb (2.7 kg) | 9.7 lb (4.4 kg)       | 12.6 lb (5.7 kg)      |                      |                             |  |  |

**velocity**EHS°





### **Using Design Guidelines: New Product Designs**

Start with orienting yourself to where the operator will be positioned while accessing the product

- Identify which design guidelines you need to evaluate against
  - » Component Assembly Forces
  - » Accessibility
- Review order of component assembly and origin of each component
  - » Separated vs bulk parts presentation
  - » Top-down vs bottom-up assembly
  - » Impact on part materials of environmental factors (i.e. heat, humidity, sunlight, etc.)





### **Examples of Design Guidelines (Cont'd)**

- Manual material handling guidelines established for different global populations
- Optimal Zone (Green Zone)
   » 5th percentile female elbow height
   » 95th percentile male elbow height
- Comfort Zone (Yellow Zone)

   Sth percentile female shoulder height
   95th percentile male knee height
- Extended Zone (Red Zone)
   » 5th percentile female height plus 300 mm (ACGIH Guideline)

» 95th percentile male mid-shin height





### **Using Design Guidelines: Existing Work Environments**

#### Which MSD Risk Factors are present?

- Identify which design guidelines are relevant to the situation
  - » Ex: 2-handed push strength, Horizontal handle height, etc.
- Compare existing measurements to design guidelines
  - » Ex: Current force to move drum vs Recommended force to push drum cart



High forces to manually maneuver 80-lb drums.

Provided drum cart to improve postures and reduce force exertions.



### **Using Design Guidelines: New Equipment Designs**

# Start with identifying which design guidelines you need to evaluate against

#### Some questions to ask:

- Where is this equipment going to be located?
   » Choose the correct population related design guidelines
- What is the weight of the parts involved?
- How often will this job be performed?
   » Is this a frequent or infrequent job based on cycle time?





### **Using Design Guidelines: New Equipment Designs**

#### Identify and record relevant design dimensions

- Choose the worst-case scenario, if it's acceptable, everything else will be ok too
  - » Hand Working Height
  - » Horizontal Reach
  - » Parts presentation
  - » Suspended Tool Height
- What is the status of each dimension?
  - » Within Guideline Range
    - Low risk of any musculoskeletal disorder, no change necessary
  - » Outside of Design Guidelines
    - Recommended: Follow company-specific deviation process
    - Generate plan for change







#### **Ergonomics Gate Keeper**

## Who decides whether or not a design is acceptable?

Especially when a dimension falls outside of the design guideline, someone needs to be responsible for approving or rejecting the design.

- Criteria for Authority:
  - » Not directly responsible for engineering the design
  - » Responsible for the MSD risk level within the manufacturing plant
  - » Has the Authority to make approval/deny delivery
- Plant Manager is highly recommended



elocityEHS<sup>®</sup>

### **Verification of Controls**





23 © Copyright 2024, VelocityEHS. Do not distribute without authorized consent.

V

### **Why Verify Controls**

- Generate "proof" of risk reduction related to an investment of resources
  - » 2 data points can be used to estimate ROI and create buy-in for future resource requests
- Ensure that control implementation is complete
   » Operators are aware of the change and trained in any new processes/equipment
- Iterative or incremental improvements without a follow-up analysis at each stage of the roll-out to verify the risk level can result in a lost opportunity to correct your plan before it is costly





#### **How to Verify Ergonomic Controls**





### Lessons Learned





26 © Copyright 2024, VelocityEHS. Do not distribute without authorized consent.

**V** 

#### **Look Across in Existing Work Environment**

Fix once, Repeat many





#### Incorporating into New Design

- Verified Controls
- Unresolved MSD Risk Exposures
- Avoid repeating costly mistakes





#### **Prioritizing Unresolved Risk**

- List all unresolved high-risk tasks in existing or similar product along with the causal factors for each risk
- Rate or rank the severity of risk exposure
- Sort the causes into types (e.g. product design, tool design, process flow)
- Review the sorted list with engineers in that and rate the difficulty to address the underlying cause
- Use a severity/difficulty matrix to obtain agreement with project team on design priorities for ergonomics



### Interactive Ergonomics Program Self-Assessment

Scan the QR code to quickly assess your current program. You'll get **easy-to-read results** & **customized recommendations** for improvement.







#### **Questions?**







Rachel Zoky, CPE Senior Strategic Consultant **Rick Barker, CSP, CPE** Sr. Director, Solution Strategy Blake McGowan, CPE Solution Executive

